A Fixed Point Theorem for Left Amenable Semi-Topological Semigroups
نویسندگان
چکیده
منابع مشابه
Vector ultrametric spaces and a fixed point theorem for correspondences
In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
متن کاملFixed point characterization of left amenable Lau algebras
The present paper deals with the concept of left amenability for a wide range of Banach algebras known as Lau algebras. It gives a fixed point property characterizing left amenable Lau algebras in terms of left Banach -modules. It also offers an application of this result to some Lau algebras related to a locally compact group G, such as the Eymard-Fourier algebra A(G), the Fourier-Stieltjes al...
متن کاملA fixed point theorem in a Hausdorff topological vector space
In this paper, we will give a new fixed point theorem for lower semicontinuous multimaps in a Hausdorff topological vector space.
متن کاملCommon fixed point theorem for nonexpansive type single valued mappings
The aim of this paper is to prove a common fixed point theorem for nonexpansive type single valued mappings which include both continuous and discontinuous mappings by relaxing the condition of continuity by weak reciprocally continuous mapping. Our result is generalize and extends the corresponding result of Jhade et al. [P.K. Jhade, A.S. Saluja and R. Kushwah, Coincidence and fixed points of ...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2015
ISSN: 0974-5645,0974-6846
DOI: 10.17485/ijst/2015/v8i12/71431